enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The nullity of a matrix is the dimension of the null space, and is equal to the number of columns in the reduced row echelon form that do not have pivots. [7] The rank and nullity of a matrix A with n columns are related by the equation: ⁡ + ⁡ =. This is known as the rank–nullity theorem.

  3. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  4. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    The first isomorphism theorem for vector spaces says that the quotient space V/ker(T) is isomorphic to the image of V in W. An immediate corollary, for finite-dimensional spaces, is the rank–nullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T).

  5. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    The matrix [] has rank 2: the first two columns are linearly independent, so the rank is at least 2, but since the third is a linear combination of the first two (the first column plus the second), the three columns are linearly dependent so the rank must be less than 3.

  6. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  7. Rank (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Rank_(graph_theory)

    Equivalently, the rank of a graph is the rank of the oriented incidence matrix associated with the graph. [2] Analogously, the nullity of the graph is the nullity of its oriented incidence matrix, given by the formula m − n + c, where n and c are as above and m is the number of edges in the graph. The nullity is equal to the first Betti ...

  8. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    Similarity is an equivalence relation on the space of square matrices. Because matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases, similar matrices share all properties of their shared underlying operator: Rank; Characteristic polynomial, and attributes that can be derived from it:

  9. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of M is given by m − n + c, where, c is the number of components of the graph and n − c is the rank of the oriented incidence matrix. This name is rarely used; the number is more commonly known as the cycle rank, cyclomatic number, or circuit rank of the graph. It is equal to the rank of the cographic matroid of the graph.