Search results
Results from the WOW.Com Content Network
Field lines depicting the electric field created by a positive charge (left), negative charge (center), and uncharged object (right). A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length.
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.
The field is depicted by electric field lines, lines which follow the direction of the electric field in space. The induced charge distribution in the sheet is not shown. The electric field is defined at each point in space as the force that would be experienced by an infinitesimally small stationary test charge at that point divided by the charge.
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero. In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only ...
The concept is also used for the electromagnetic fields, where fluid flow is replaced by field lines. [5] For an electric field, a source is a point where electric field lines emanate, such as a positive charge (>), while a sink is where field lines converge (<), such as a negative charge. [6]
As the electric field is defined in terms of force, and force is a vector, having both magnitude and direction, it follows that an electric field is a vector field. [25]: 469–70 The study of electric fields created by stationary charges is called electrostatics. The field may be visualised by a set of imaginary lines whose direction at any ...