Search results
Results from the WOW.Com Content Network
In computer science, a computation is said to diverge if it does not terminate or terminates in an exceptional state. [1]: 377 Otherwise it is said to converge.In domains where computations are expected to be infinite, such as process calculi, a computation is said to diverge if it fails to be productive (i.e. to continue producing an action within a finite amount of time).
The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
For a given iterated function :, the plot consists of a diagonal (=) line and a curve representing = ().To plot the behaviour of a value , apply the following steps.. Find the point on the function curve with an x-coordinate of .
An example of a spider web projection of a trajectory on the graph of the logistic map, and the locations of the fixed points and on the graph. Graphs of maps, especially those of one variable such as the logistic map, are key to understanding the behavior of the map.
Unlike metrics, divergences are not required to be symmetric, and the asymmetry is important in applications. [3] Accordingly, one often refers asymmetrically to the divergence "of q from p" or "from p to q", rather than "between p and q".
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded. For sums of non-negative increasing sequences 0 ≤ a i , 1 ≤ a i , 2 ≤ ⋯ {\displaystyle 0\leq a_{i,1}\leq a_{i,2}\leq \cdots } , it says that taking the sum and the supremum can be interchanged.