Search results
Results from the WOW.Com Content Network
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
Regular polygrams {n/d}, with red lines showing constant d, and blue lines showing compound sequences k{n/d} In geometry, a generalized polygon can be called a polygram, and named specifically by its number of sides. All polygons are polygrams, but they can also include disconnected sets of edges, called a compound polygon.
Thus the first term to appear between 1 / 3 and 2 / 5 is 3 / 8 , which appears in F 8. The total number of Farey neighbour pairs in F n is 2| F n | − 3. The Stern–Brocot tree is a data structure showing how the sequence is built up from 0 (= 0 / 1 ) and 1 (= 1 / 1 ), by taking successive mediants.
[1] [2] [5] [9] [14] [16] Fractal dimensions were first applied as an index characterizing complicated geometric forms for which the details seemed more important than the gross picture. [16] For sets describing ordinary geometric shapes, the theoretical fractal dimension equals the set's familiar Euclidean or topological dimension. Thus, it is ...
A solid square is understood to be two-dimensional; if such a figure is rep-tiled into pieces each scaled down by a factor of 1/3 in both dimensions, there are a total of 3 2 = 9 pieces. We see that for ordinary self-similar objects, being n-dimensional means that when it is rep-tiled into pieces each scaled down by a scale-factor of 1/ r ...
In a fraction, the number of equal parts being described is the numerator (from Latin: numerātor, "counter" or "numberer"), and the type or variety of the parts is the denominator (from Latin: dēnōminātor, "thing that names or designates"). [2] [3] As an example, the fraction 8 / 5 amounts to eight parts, each of which is of the ...
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
In 3-dimensions it will be a zig-zag skew icositetragon and can be seen in the vertices and side edges of a dodecagonal antiprism with the same D 12d, [2 +,24] symmetry, order 48. The dodecagrammic antiprism, s{2,24/5} and dodecagrammic crossed-antiprism, s{2,24/7} also have regular skew dodecagons.