Search results
Results from the WOW.Com Content Network
The econometrician Robert Engle was awarded the 2003 Nobel Memorial Prize for Economics for his studies on regression analysis in the presence of heteroscedasticity, which led to his formulation of the autoregressive conditional heteroscedasticity (ARCH) modeling technique. [8]
In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance.
Glejser test for heteroscedasticity, developed in 1969 by Herbert Glejser, is a statistical test, which regresses the residuals on the explanatory variable that is thought to be related to the heteroscedastic variance. [1]
In statistics, the Breusch–Pagan test, developed in 1979 by Trevor Breusch and Adrian Pagan, [1] is used to test for heteroskedasticity in a linear regression model. It was independently suggested with some extension by R. Dennis Cook and Sanford Weisberg in 1983 (Cook–Weisberg test). [2]
White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors, were proposed by Halbert White in 1980. [1]
If, then, in a regression of on the natural logarithm of one or more of the regressors , we arrive at statistical significance for non-zero values on one or more of the ^, we reveal a connection between the residuals and the regressors. We reject the null hypothesis of homoscedasticity and conclude that heteroscedasticity is present.
An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.
In statistics, (between-) study heterogeneity is a phenomenon that commonly occurs when attempting to undertake a meta-analysis. In a simplistic scenario, studies whose results are to be combined in the meta-analysis would all be undertaken in the same way and to the same experimental protocols.