Search results
Results from the WOW.Com Content Network
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
A central problem in algorithmic graph theory is the shortest path problem.One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph.
In 2023, Haeupler, Rozhoň, Tětek, Hladík, and Tarjan (one of the inventors of the 1984 heap), proved that, for this sorting problem on a positively-weighted directed graph, a version of Dijkstra's algorithm with a special heap data structure has a runtime and number of comparisons that is within a constant factor of optimal among comparison ...
A few variants of the Chinese Postman Problem have been studied and shown to be NP-complete. [10] The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction.
This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.
Breadth-first search can be used to solve many problems in graph theory, for example: Copying garbage collection, Cheney's algorithm; Finding the shortest path between two nodes u and v, with path length measured by number of edges (an advantage over depth-first search) [14] (Reverse) Cuthill–McKee mesh numbering
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...
The works of Ramsey on colorations and more specially the results obtained by Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch published a method for solving the problem using computers. [29]