enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  4. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    In analogy with the cross-section of a solid, the cross-section of an n-dimensional body in an n-dimensional space is the non-empty intersection of the body with a hyperplane (an (n − 1)-dimensional subspace). This concept has sometimes been used to help visualize aspects of higher dimensional spaces. [7]

  5. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A polyhedron with 2n kite faces around an axis, with half offsets tetragonal trapezohedron: Cone: Tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex: A right circular cone and an oblique circular cone Cylinder: Straight parallel sides and a circular or oval cross section

  6. Polyhedron model - Wikipedia

    en.wikipedia.org/wiki/Polyhedron_model

    Net templates are then made. One way is to copy templates from a polyhedron-making book, such as Magnus Wenninger's Polyhedron Models, 1974 (ISBN 0-521-09859-9). A second way is drawing faces on paper or with computer-aided design software and then drawing on them the polyhedron's edges. The exposed nets of the faces are then traced or printed ...

  7. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)

  8. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    The icosidodecahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] The polygonal faces that meet for every vertex are two equilateral triangles and two regular pentagons, and the vertex figure of an icosidodecahedron is {{nowrap|(3 ...

  9. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.