enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  3. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Download QR code; Print/export ... Numerical methods for linear least squares entails the numerical analysis of ... Fitting of linear models by least squares ...

  4. Least-squares spectral analysis - Wikipedia

    en.wikipedia.org/wiki/Least-squares_spectral...

    Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. [ 1 ] [ 2 ] Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. [ 3 ]

  5. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    T. Strutz: Data Fitting and Uncertainty (A practical introduction to weighted least squares and beyond). 2nd edition, Springer Vieweg, 2016, ISBN 978-3-658-11455-8. H. P. Gavin, The Levenberg-Marquardt method for nonlinear least-squares curve-fitting problems (MATLAB implementation included)

  6. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  7. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .

  8. Optimization Toolbox - Wikipedia

    en.wikipedia.org/wiki/Optimization_Toolbox

    Optimization can help with fitting a model to data, where the goal is to identify the model parameters that minimize the difference between simulated and experimental data. Common parameter estimation problems that are solved with Optimization Toolbox include estimating material parameters and estimating coefficients of ordinary differential ...

  9. Recursive least squares filter - Wikipedia

    en.wikipedia.org/wiki/Recursive_least_squares_filter

    The lattice recursive least squares adaptive filter is related to the standard RLS except that it requires fewer arithmetic operations (order N). [4] It offers additional advantages over conventional LMS algorithms such as faster convergence rates, modular structure, and insensitivity to variations in eigenvalue spread of the input correlation ...