Search results
Results from the WOW.Com Content Network
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
:Used the newly formulated theory of special relativity to introduce the mass energy formula. One of the Annus Mirabilis papers. Henri Poincaré (1906) "On the Dynamics of the Electron", Rendiconti del Circolo Matematico di Palermo; Minkowski, Hermann (1915) [1907]. "Das Relativitätsprinzip" [The Relativity Principle]. Annalen der Physik (in ...
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
Special relativity is a theory of the structure of spacetime. It was introduced in Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists and mathematicians, see History of special relativity). Special relativity is based on two postulates which are contradictory in classical mechanics:
The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.
In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in 1961.
At this point, special relativity was not fully combined with quantum mechanics, so the Schrödinger and Heisenberg formulations, as originally proposed, could not be used in situations where the particles travel near the speed of light, or when the number of each type of particle changes (this happens in real particle interactions; the ...