enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    In air or water, objects experience a supporting buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them (the gravitational constant). Newton would need an accurate measure of this constant to prove his inverse-square law.

  4. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    The mass of an object is a measure of the object’s inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s 2. In trade and commerce and ...

  5. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Suppose a rock's weight is measured as 10 newtons when suspended by a string in a vacuum with gravity acting on it. Suppose that, when the rock is lowered into the water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyant force: 10 − 3 = 7 newtons.

  6. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    The "force constant" is just the coefficient of the displacement term in the equation of motion: m a + b v + k x + constant = F(X,t) m mass, a acceleration, b viscosity, v velocity, k force constant, x displacement F external force as a function of location/position and time. F is the force being measured, and ⁠ F / m ⁠ is the acceleration.

  7. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1] = 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The relative standard uncertainty is 2.2 × 10 −5.

  8. Pound (force) - Wikipedia

    en.wikipedia.org/wiki/Pound_(force)

    The pound-force is equal to the gravitational force exerted on a mass of one avoirdupois pound on the surface of Earth. Since the 18th century, the unit has been used in low-precision measurements, for which small changes in Earth's gravity (which varies from equator to pole by up to half a percent) can safely be neglected. [4]

  9. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...