Search results
Results from the WOW.Com Content Network
A light source passes behind a gravitational lens (invisible point mass placed in the center of the image). The aqua circle is the light source as it would be seen if there were no lens, while white spots are the multiple images of the source (see Einstein ring).
where G is the gravitational constant, M the mass of the deflecting object and c the speed of light. A naive application of Newtonian gravity can yield exactly half this value, where the light ray is assumed as a massed particle and scattered by the gravitational potential well.
The geometry of gravitational lenses. In the following derivation of the Einstein radius, we will assume that all of mass M of the lensing galaxy L is concentrated in the center of the galaxy. For a point mass the deflection can be calculated and is one of the classical tests of general relativity.
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.
The key difference between an embedded lens and a traditional lens is that the mass of a standard lens contributes to the mean of the cosmological density, whereas that of an embedded lens does not. Consequently, the gravitational potential of an embedded lens has a finite range, i.e., there is no lensing effect outside of the void.
Strong gravitational lensing is a gravitational lensing effect that is strong enough to produce multiple images, arcs, or Einstein rings. Generally, for strong lensing to occur, the projected lens mass density must be greater than the critical density, that is . For point-like background sources, there will be multiple images; for extended ...
If they're able to use the sun as a giant gravity lens, NASA could see features the size of Central Park on distant planets.
An Einstein Ring is a special case of gravitational lensing, caused by the exact alignment of the source, lens, and observer. This results in symmetry around the lens, causing a ring-like structure. [2] The geometry of a complete Einstein ring, as caused by a gravitational lens. The size of an Einstein ring is given by the Einstein radius.