enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homogeneity and heterogeneity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and...

    In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets. They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part.

  3. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Heteroscedasticity often occurs when there is a large difference among the sizes of the observations. A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food.

  4. Study heterogeneity - Wikipedia

    en.wikipedia.org/wiki/Study_heterogeneity

    Statistical testing for a non-zero heterogeneity variance is often done based on Cochran's Q [13] or related test procedures. This common procedure however is questionable for several reasons, namely, the low power of such tests [14] especially in the very common case of only few estimates being combined in the analysis, [15] [7] as well as the specification of homogeneity as the null ...

  5. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    This test, and an estimator for heteroscedasticity-consistent standard errors, were proposed by Halbert White in 1980. [1] These methods have become widely used, making this paper one of the most cited articles in economics.

  6. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity, and this behaviour will be reflected in the residuals ^ estimated from a fitted model. Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals.

  7. Breusch–Pagan test - Wikipedia

    en.wikipedia.org/wiki/Breusch–Pagan_test

    In Stata, one specifies the full regression, and then enters the command estat hettest followed by all independent variables. [9] [10] In SAS, Breusch–Pagan can be obtained using the Proc Model option. In Python, there is a method het_breuschpagan in statsmodels.stats.diagnostic (the statsmodels package) for Breusch–Pagan test. [11]

  8. Joey Galloway: Indiana should bench QB Kurtis Rourke vs Ohio ...

    www.aol.com/joey-galloway-indiana-bench-qb...

    A win against Ohio State on Saturday will likely give Indiana a spot in the Big Ten title game against No. 1 Oregon, where the winner receives an automatic bid and first-round bye in the CFP.

  9. Goldfeld–Quandt test - Wikipedia

    en.wikipedia.org/wiki/Goldfeld–Quandt_test

    Herbert Glejser, in his 1969 paper outlining the Glejser test, provides a small sampling experiment to test the power and sensitivity of the Goldfeld–Quandt test. His results show limited success for the Goldfeld–Quandt test except under cases of "pure heteroskedasticity"—where variance can be described as a function of only the underlying explanatory variable.