enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel rhomb - Wikipedia

    en.wikipedia.org/wiki/Fresnel_rhomb

    A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa.

  3. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Fresnel equations. Partial transmission and reflection of a pulse travelling from a low to a high refractive index medium. At near-grazing incidence, media interfaces appear mirror-like especially due to reflection of the s polarization, despite being poor reflectors at normal incidence. Polarized sunglasses block the s polarization, greatly ...

  4. Fresnel integral - Wikipedia

    en.wikipedia.org/wiki/Fresnel_integral

    The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.

  5. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [ 1] The sum of these spherical wavelets forms a new wavefront.

  6. Fresnel lens - Wikipedia

    en.wikipedia.org/wiki/Fresnel_lens

    The Fresnel lens reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections. An ideal Fresnel lens would have an infinite number of sections. In each section, the overall thickness is decreased compared to an equivalent simple lens.

  7. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [ 1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

  8. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Methods using transfer matrices of higher dimensionality, that is 3×3, 4×4, and 6×6, are also used in optical analysis. [9] [10] [11] In particular, 4×4 propagation matrices are used in the design and analysis of prism sequences for pulse compression in femtosecond lasers. [5]

  9. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).