enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Physiology of marathons - Wikipedia

    en.wikipedia.org/wiki/Physiology_of_marathons

    The aerobic energy pathway is the third and slowest ATP producing pathway that is oxygen dependent. This energy pathway typically supplies the bulk of the body's energy during exercise—after three minutes from the onset of exercise until the end, or when the individual experiences fatigue.

  3. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    The process that converts the chemical energy of food into ATP (which can release energy) is not dependent on oxygen availability. During exercise, the supply and demand of oxygen available to muscle cells is affected by duration and intensity and by the individual's cardio respiratory fitness level. [1]

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    For multicellular organisms, during short bursts of strenuous activity, muscle cells use fermentation to supplement the ATP production from the slower aerobic respiration, so fermentation may be used by a cell even before the oxygen levels are depleted, as is the case in sports that do not require athletes to pace themselves, such as sprinting.

  5. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Lactic acid fermentation is used by human muscle cells as a means of generating ATP during strenuous exercise where oxygen consumption is higher than the supplied oxygen. As this process progresses, the surplus of lactate is brought to the liver , which converts it back to pyruvate.

  6. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]

  7. Muscular system - Wikipedia

    en.wikipedia.org/wiki/Muscular_system

    During exercise, the method of ATP production varies depending on the fitness of the individual as well as the duration and intensity of exercise. At lower activity levels, when exercise continues for a long duration (several minutes or longer), energy is produced aerobically by combining oxygen with carbohydrates and fats stored in the body ...

  8. Purine nucleotide cycle - Wikipedia

    en.wikipedia.org/wiki/Purine_nucleotide_cycle

    During exercise when the ATP reservoir is low (ADP>ATP), the purine nucleotide cycle produces ammonia (NH 3) when it converts AMP into IMP. (With the exception of AMP deaminase deficiency, where ammonia is produced during exercise when adenosine, from AMP, is converted into inosine). During rest (ADP<ATP), ammonia is produced from the ...

  9. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...