enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [4]

  3. Large margin nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor

    The hyperparameter > is some positive constant (typically set through cross-validation). Here the variables ξ i j l {\displaystyle \xi _{ijl}} (together with two types of constraints) replace the term in the cost function.

  4. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The test sample (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).

  5. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A hyperparameter is a constant parameter whose value is set before the learning process begins. The values of parameters are derived via learning. The values of parameters are derived via learning. Examples of hyperparameters include learning rate , the number of hidden layers and batch size.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Hierarchical navigable small world - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_navigable...

    The Hierarchical navigable small world (HNSW) algorithm is a graph-based approximate nearest neighbor search technique used in many vector databases. [1] [2] Nearest neighbor search without an index involves computing the distance from the query to each point in the database, which for large datasets is computationally prohibitive.

  9. Nearest centroid classifier - Wikipedia

    en.wikipedia.org/wiki/Nearest_centroid_classifier

    Rocchio Classification. In machine learning, a nearest centroid classifier or nearest prototype classifier is a classification model that assigns to observations the label of the class of training samples whose mean is closest to the observation.