Search results
Results from the WOW.Com Content Network
The quality of DBSCAN depends on the distance measure used in the function regionQuery(P,ε). The most common distance metric used is Euclidean distance. Especially for high-dimensional data, this metric can be rendered almost useless due to the so-called "Curse of dimensionality", making it difficult to find an appropriate value for ε. This ...
Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...
He received the 2013 IEEE ICDM Research Contributions Award for his research on data mining algorithms such as DBSCAN, OPTICS, Local Outlier Factor and his work on mining high-dimensional data. [ 3 ] He was also awarded the 2015 ACM SIGKDD Innovation Award for his contributions to data mining in clustering, outlier detection and high ...
SUBCLU is an algorithm for clustering high-dimensional data by Karin Kailing, Hans-Peter Kriegel and Peer Kröger. [1] It is a subspace clustering algorithm that builds on the density-based clustering algorithm DBSCAN. SUBCLU can find clusters in axis-parallel subspaces, and uses a bottom-up, greedy strategy to remain efficient.
Nevertheless, the situation in high-dimensional statistics may not be hopeless when the data possess some low-dimensional structure. One common assumption for high-dimensional linear regression is that the vector of regression coefficients is sparse , in the sense that most coordinates of β {\displaystyle \beta } are zero.
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
This led to new clustering algorithms for high-dimensional data that focus on subspace clustering (where only some attributes are used, and cluster models include the relevant attributes for the cluster) and correlation clustering that also looks for arbitrary rotated ("correlated") subspace clusters that can be modeled by giving a correlation ...
They can also be decoded to recover the input data. H is typically restricted to range-limited integers (-v-v) [3] This is analogous to the learning process conducted by fruit flies olfactory system. The input is a roughly 50-dimensional vector corresponding to odor receptor neuron types. The HD representation uses ~2,000-dimensions. [3]