enow.com Web Search

  1. Ad

    related to: variational inequality problems examples with answers pdf notes

Search results

  1. Results from the WOW.Com Content Network
  2. Variational inequality - Wikipedia

    en.wikipedia.org/wiki/Variational_inequality

    The first problem involving a variational inequality was the Signorini problem, posed by Antonio Signorini in 1959 and solved by Gaetano Fichera in 1963, according to the references (Antman 1983, pp. 282–284) and (Fichera 1995): the first papers of the theory were (Fichera 1963) and (Fichera 1964a), (Fichera 1964b).

  3. Obstacle problem - Wikipedia

    en.wikipedia.org/wiki/Obstacle_problem

    The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary problems. The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle.

  4. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.

  5. Differential variational inequality - Wikipedia

    en.wikipedia.org/wiki/Differential_variational...

    Examples of such problems include, for example, mechanical impact problems, electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, and dynamic economic and related problems such as dynamic traffic networks and networks of queues (where the constraints can either be upper limits on queue length or that the queue ...

  6. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    The idea of solving minimization problems while restricting the values on the boundary can be further generalized by looking on function spaces where the trace is fixed only on a part of the boundary, and can be arbitrary on the rest. The next section presents theorems regarding weak sequential lower semi-continuity of functionals of the above ...

  7. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function

  8. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality In mathematics , Jensen's inequality , named after the Danish mathematician Johan Jensen , relates the value of a convex function of an integral to the integral of the convex function.

  9. Variational principle - Wikipedia

    en.wikipedia.org/wiki/Variational_principle

    For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.

  1. Ad

    related to: variational inequality problems examples with answers pdf notes