Search results
Results from the WOW.Com Content Network
Diagram of a newly formed planet in a state of hydrostatic equilibrium. In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. [1]
Here, the hydrostatic pressure forces are F 1 and F 2, the component (τ w Pl) represents the shear force of friction acting on the control volume, and the component (ω sin θ) represents the gravitational force of the fluid's weight acting on the sloped channel bottom are held in balance in the flow direction. [1]
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium [1] and "the pressure in a fluid or exerted by a fluid on an immersed body". [ 2 ] It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics , the study of fluids in motion.
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
If the fluid flow is brought to rest at some point, this point is called a stagnation point, and at this point the static pressure is equal to the stagnation pressure. If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]:
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics .
The movement of the particles in a 2D liquid is similar to 3D, but with limited degrees of freedom. E.g. rotational motion can be limited to rotation about only one axis, in contrast to a 3D liquid, where rotation of molecules about two or three axis would be possible.