Search results
Results from the WOW.Com Content Network
The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]
The set of all integers, {..., −1, 0, 1, 2, ...} is a countably infinite set. The set of all even integers is also a countably infinite set, even if it is a proper subset of the integers. [3] The set of all rational numbers is a countably infinite set as there is a bijection to the set of integers. [3]
Elements covered by (3, 3) and covering (3, 3) are highlighted in green and red, respectively. In order of increasing strength, i.e., decreasing sets of pairs, three of the possible partial orders on the Cartesian product of two partially ordered sets are (see Fig. 4):
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
For instance, for the sets {1, 2, 3} and {2, 3, 4}, the symmetric difference set is {1, 4}. It is the set difference of the union and the intersection, (A ∪ B) \ (A ∩ B) or (A \ B) ∪ (B \ A). Cartesian product of A and B, denoted A × B, is the set whose members are all possible ordered pairs (a, b), where a is a member of A and b is a ...
3 Two sets involved. ... 6.3 Binary ⋃ of finite ⨯. 6.4 ... is an absorbing element of binary intersection and binary Cartesian product , and it is also a ...