Search results
Results from the WOW.Com Content Network
Ectotherms typically have lower metabolic rates than endotherms at a given body mass. As a consequence, endotherms generally rely on higher food consumption, and commonly on food of higher energy content. Such requirements may limit the carrying capacity of a given environment for endotherms as compared to its carrying capacity for ectotherms.
Gigantothermy (sometimes called ectothermic homeothermy or inertial homeothermy) is a phenomenon with significance in biology and paleontology, whereby large, bulky ectothermic animals are more easily able to maintain a constant, relatively high body temperature than smaller animals by virtue of their smaller surface-area-to-volume ratio. [1]
Thermal ecology is the study of the interactions between temperature and organisms. Such interactions include the effects of temperature on an organism's physiology, behavioral patterns, and relationship with its environment.
In 1847, Carl Bergmann published his observations that endothermic body size (i.e. mammals) increased with increasing latitude, commonly known as Bergmann's rule. [9] His rule postulated that selection favored within species individuals with larger body sizes in cooler temperatures because the total heat loss would be diminished through lower surface area to volume ratios. [8]
A eurytherm is an organism, often an endotherm, that can function at a wide range of ambient temperatures. [1] To be considered a eurytherm, all stages of an organism's life cycle must be considered, including juvenile and larval stages. [2]
The term 'mesothermy' was originally coined [6] to advocate for an intermediate status of non-avian dinosaur thermoregulation, between endotherms and ectotherms. A more technical definition was provided by Grady et al , [ 7 ] who argued for dinosaur mesothermy on the basis of their intermediate growth rates , and the empirical relationship ...
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
Many ectotherms exploit the heat produced by endotherms by sharing their nests and burrows. For example, mammal burrows are used by geckos and seabird burrows by Australian tiger snakes and New Zealand tuatara. [13] Termites create high and regulated temperatures in their mounds, and this is exploited by some species of lizards, snakes and ...