Search results
Results from the WOW.Com Content Network
Graph = with the -axis as the horizontal axis and the -axis as the vertical axis.The -intercept of () is indicated by the red dot at (=, =).. In analytic geometry, using the common convention that the horizontal axis represents a variable and the vertical axis represents a variable , a -intercept or vertical intercept is a point where the graph of a function or relation intersects the -axis of ...
The Schild plot of a reversible competitive antagonist should be a straight line, with linear gradient, whose y-intercept relates to the strength of the antagonist. In pharmacology , Schild regression analysis , based upon the Schild equation , both named for Heinz Otto Schild , are tools for studying the effects of agonists and antagonists on ...
When plotted in the manner described above, the value of the y-intercept (at = / =) will correspond to (), and the slope of the line will be equal to /. The values of y-intercept and slope can be determined from the experimental points using simple linear regression with a spreadsheet .
Graph of points and linear least squares lines in the simple linear regression numerical example. The 0.975 quantile of Student's t-distribution with 13 degrees of freedom is t * 13 = 2.1604, and thus the 95% confidence intervals for α and β are
Security characteristic line (SCL) is a regression line, [1] plotting performance of a particular security or portfolio against that of the market portfolio at every point in time. The SCL is plotted on a graph where the Y-axis is the excess return on a security over the risk-free return and the X-axis is the excess return of the market in general.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The data sets in the Anscombe's quartet are designed to have approximately the same linear regression line (as well as nearly identical means, standard deviations, and correlations) but are graphically very different. This illustrates the pitfalls of relying solely on a fitted model to understand the relationship between variables.
The fit line is then the line y = mx + b with coefficients m and b in slope–intercept form. [12] As Sen observed, this choice of slope makes the Kendall tau rank correlation coefficient become approximately zero, when it is used to compare the values x i with their associated residuals y i − mx i − b. Intuitively, this suggests that how ...