enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commonality analysis - Wikipedia

    en.wikipedia.org/wiki/Commonality_analysis

    Commonality analysis is a statistical technique within multiple linear regression that decomposes a model's R 2 statistic (i.e., explained variance) by all independent variables on a dependent variable in a multiple linear regression model into commonality coefficients.

  3. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...

  4. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    In this context the extraneous variables can be controlled for by using multiple regression. The regression uses as independent variables not only the one or ones whose effects on the dependent variable are being studied, but also any potential confounding variables, thus avoiding omitted variable bias.

  5. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x).

  6. Segmented regression - Wikipedia

    en.wikipedia.org/wiki/Segmented_regression

    A segmented regression analysis is based on the presence of a set of ( y, x) data, in which y is the dependent variable and x the independent variable. The least squares method applied separately to each segment, by which the two regression lines are made to fit the data set as closely as possible while minimizing the sum of squares of the ...

  7. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    The M in M-estimation stands for "maximum likelihood type". The method is robust to outliers in the response variable, but turned out not to be resistant to outliers in the explanatory variables (leverage points). In fact, when there are outliers in the explanatory variables, the method has no advantage over least squares.

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    When using multinomial logistic regression, one category of the dependent variable is chosen as the reference category. Separate odds ratios are determined for all independent variables for each category of the dependent variable with the exception of the reference category, which is omitted from the analysis. The exponential beta coefficient ...

  9. Path analysis (statistics) - Wikipedia

    en.wikipedia.org/wiki/Path_analysis_(statistics)

    That is, in tracing a path from a dependent variable to an independent variable, include the variance of the independent-variable except where so doing would violate rule 1 above (passing through adjacent arrowheads: i.e., when the independent variable also connects to a double-headed arrow connecting it to another independent variable).