enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Namely, composite Simpson's 1/3 rule requires 1.8 times more points to achieve the same accuracy as trapezoidal rule. [8] Composite Simpson's 3/8 rule is even less accurate. Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the ...

  3. Simpson's rules (ship stability) - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rules_(ship...

    Simpson's rules are a set of rules used in ship stability and naval architecture, to calculate the areas and volumes of irregular figures. [1] This is an application of Simpson's rule for finding the values of an integral, here interpreted as the area under a curve. Simpson's First Rule.

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈrʊŋəˈkʊtɑː / ⓘ RUUNG-ə-KUUT-tah[1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  5. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Simpson's rule, which is based on a polynomial of order 2, is also a Newton–Cotes formula. Quadrature rules with equally spaced points have the very convenient property of nesting. The corresponding rule with each interval subdivided includes all the current points, so those integrand values can be re-used.

  6. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    Runge–Kutta methods are methods for the numerical solution of the ordinary differential equation. Explicit Runge–Kutta methods take the form. Stages for implicit methods of s stages take the more general form, with the solution to be found over all s. {\displaystyle k_ {i}=f\left (t_ {n}+c_ {i}h,y_ {n}+h\sum _ {j=1}^ {s}a_ {ij}k_ {j}\right).}

  7. Adaptive Simpson's method - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Simpson's_method

    Adaptive Simpson's method, also called adaptive Simpson's rule, is a method of numerical integration proposed by G.F. Kuncir in 1962. [1] It is probably the first recursive adaptive algorithm for numerical integration to appear in print, [2] although more modern adaptive methods based on Gauss–Kronrod quadrature and Clenshaw–Curtis ...

  8. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    Romberg's method. In numerical analysis, Romberg's method[1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally ...

  9. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    Trapezoidal rule. The function f (x) (in blue) is approximated by a linear function (in red). In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: The trapezoidal rule works by approximating the region under the graph of ...