Search results
Results from the WOW.Com Content Network
A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
It is sometimes necessary to separate a continued fraction into its even and odd parts. For example, if the continued fraction diverges by oscillation between two distinct limit points p and q, then the sequence {x 0, x 2, x 4, ...} must converge to one of these, and {x 1, x 3, x 5, ...} must converge to the other.
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1] In other words, a fraction a b is irreducible if and only if a and b are coprime, that is ...
As for fractions, the simplest form is considered that in which the numbers in the ratio are the smallest possible integers. Thus, the ratio 40:60 is equivalent in meaning to the ratio 2:3, the latter being obtained from the former by dividing both quantities by 20. Mathematically, we write 40:60 = 2:3, or equivalently 40:60∷2:3.
Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit. Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 1 / 2 × 2 1 / 2 = 11 1 / 4
However, if the fraction 1/1 is replaced by the fraction 2/2, which is an equivalent fraction denoting the same rational number 1, the mediant of the fractions 2/2 and 1/2 is 3/4. For a stronger connection to rational numbers the fractions may be required to be reduced to lowest terms, thereby selecting unique representatives from the ...
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial