enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    Equivalently, ⁠ 2n − 1 / 3 ⁠ ≡ 1 (mod 2) if and only if n ≡ 2 (mod 3). Conjecturally, this inverse relation forms a tree except for a 1–2 loop (the inverse of the 1–2 loop of the function f(n) revised as indicated above). Alternatively, replace the 3n + 1 with ⁠ n ′ / H(n ′) ⁠ where n ′ = 3n + 1 and H(n ′) is the ...

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n1 + P n−2.

  4. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...

  5. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A recurrence relation is an equation that expresses each element of a sequence as a function of the preceding ones. More precisely, in the case where only the immediately preceding element is involved, a recurrence relation has the form. φ > {\displaystyle u_ {n}=\varphi (n,u_ {n-1})\quad {\text {for}}\quad n>0,} where.

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The same illustration for The midpoint method converges faster than the Euler method, as . Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to ...

  7. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real -valued function. The most basic version starts with a real-valued function f, its derivative f ...

  9. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 1/3 rule, also simply called Simpson's rule, is a method for numerical integration proposed by Thomas Simpson. It is based upon a quadratic interpolation and is the composite Simpson's 1/3 rule evaluated for . Simpson's 1/3 rule is as follows: where is the step size for .