enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhind Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

    Also bear in mind that the fraction 2/3 is the single exception, used in addition to integers, that Ahmes uses alongside all (positive) rational unit fractions to express Egyptian fractions. The 2/n table can be said to partially follow an algorithm (see problem 61B) for expressing 2/n as an Egyptian fraction of 2 terms, when n is composite.

  3. The table consisted of 26 unit fraction series of the form 1/n written as sums of other rational numbers. [9] The Akhmim wooden tablet wrote difficult fractions of the form 1/n (specifically, 1/3, 1/7, 1/10, 1/11 and 1/13) in terms of Eye of Horus fractions which were fractions of the form ⁠ 1 / 2 k ⁠ and remainders expressed in terms of a ...

  4. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    A golden rectangle—that is, a rectangle with an aspect ratio of —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets, in some cases based on dubious fits to data. [8]

  5. Farey sequence - Wikipedia

    en.wikipedia.org/wiki/Farey_sequence

    In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, [a] which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size. With the restricted definition, each Farey sequence starts with the value 0, denoted ...

  6. Young tableau - Wikipedia

    en.wikipedia.org/wiki/Young_tableau

    Young diagram of shape (5, 4, 1), English notation Young diagram of shape (5, 4, 1), French notation. A Young diagram (also called a Ferrers diagram, particularly when represented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths in non-increasing order.

  7. Egyptian geometry - Wikipedia

    en.wikipedia.org/wiki/Egyptian_geometry

    The Lahun Papyrus Problem 1 in LV.4 is given as: An area of 40 "mH" by 3 "mH" shall be divided in 10 areas, each of which shall have a width that is 1/2 1/4 of their length. [12] A translation of the problem and its solution as it appears on the fragment is given on the website maintained by University College London.

  8. Cuisenaire rods - Wikipedia

    en.wikipedia.org/wiki/Cuisenaire_rods

    Cuisenaire rods. Cuisenaire rods are mathematics learning aids for pupils that provide an interactive, hands-on [1] way to explore mathematics and learn mathematical concepts, such as the four basic arithmetical operations, working with fractions and finding divisors. [2][3] In the early 1950s, Caleb Gattegno popularised this set of coloured ...

  9. Karnaugh map - Wikipedia

    en.wikipedia.org/wiki/Karnaugh_map

    A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [1][2] as a refinement of Edward W. Veitch 's 1952 Veitch chart, [3][4] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram[5][6] (aka. Marquand diagram[4]).