Search results
Results from the WOW.Com Content Network
Probability that D 1 = 2. Table 1 shows the sample space of 36 combinations of rolled values of the two dice, each of which occurs with probability 1/36, with the numbers displayed in the red and dark gray cells being D 1 + D 2. D 1 = 2 in exactly 6 of the 36 outcomes; thus P(D 1 = 2) = 6 ⁄ 36 = 1 ⁄ 6:
P( at least one estimation is bad) = 0.05 ≤ P( A 1 is bad) + P( A 2 is bad) + P( A 3 is bad) + P( A 4 is bad) + P( A 5 is bad) One way is to make each of them equal to 0.05/5 = 0.01, that is 1%. In other words, you have to guarantee each estimate good to 99%( for example, by constructing a 99% confidence interval) to make sure the total ...
P (A), the prior, is the initial degree of belief in A. P (A | B), the posterior, is the degree of belief after incorporating news that B is true. the quotient P(B | A) / P(B) represents the support B provides for A. For more on the application of Bayes' theorem under the Bayesian interpretation of probability, see Bayesian inference.
Assume that there is a counterexample: an integer n ≥ 2 such that there is no prime p with n < p < 2n. If 2 ≤ n < 427, then p can be chosen from among the prime numbers 3, 5, 7, 13, 23, 43, 83, 163, 317, 631 (each being the largest prime less than twice its predecessor) such that n < p < 2n. Therefore, n ≥ 427.
Because homeomorphisms can be described entirely in terms of derived sets, derived sets have been used as the primitive notion in topology.A set of points can be equipped with an operator mapping subsets of to subsets of , such that for any set and any point :
This article is written for those who want to get better at using price to earnings ratios (P/E ratios). To keep it...
The second technique is more suitable for constructing outer measures on metric spaces, since it yields metric outer measures. Suppose (X, d) is a metric space. As above C is a family of subsets of X which contains the empty set and p a non-negative extended real valued function on C which vanishes on the empty set.
The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers R {\displaystyle \mathbb {R} } , the completion of the rational numbers with respect to the p {\displaystyle p} -adic absolute value ...