enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Therefore, 12 is the greatest common divisor of 24 and 60. A 24-by-60 rectangular area can thus be divided into a grid of 12-by-12 squares, with two squares along one edge ( 24/12 = 2 ) and five squares along the other ( 60/12 = 5 ).

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime factor p of n is the largest exponent ... has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18 ... (greatest common divisor ...

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    A 24×60 rectangular area can be divided into a grid of 12×12 squares, with two squares along one edge (24/12 = 2) and five squares along the other (60/12 = 5). The greatest common divisor of two numbers a and b is the product of the prime factors shared by the two numbers, where each prime factor can be repeated as many times as it divides ...

  5. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  6. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    It follows that this greatest common divisor is a non constant factor of (). Euclidean algorithm for polynomials allows computing this greatest common factor. For example, [ 10 ] if one know or guess that: P ( x ) = x 3 − 5 x 2 − 16 x + 80 {\displaystyle P(x)=x^{3}-5x^{2}-16x+80} has two roots that sum to zero, one may apply Euclidean ...

  7. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    In the first step both numbers were divided by 10, which is a factor common to both 120 and 90. In the second step, they were divided by 3. The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1.

  8. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  9. Lowest common factor - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_factor

    Lowest common factor may refer to the following mathematical terms: Greatest common divisor, also known as the greatest common factor; Least common multiple;