Search results
Results from the WOW.Com Content Network
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure
Expected values can also be used to compute the variance, by means of the computational formula for the variance = [] ( []). A very important application of the expectation value is in the field of quantum mechanics.
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
Squared deviations from the mean (SDM) result from squaring deviations.In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data).
In probability theory, the law of total variance [1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then
The larger the variance, the greater risk the security carries. Finding the square root of this variance will give the standard deviation of the investment tool in question. Financial time series are known to be non-stationary series, whereas the statistical calculations above, such as standard deviation, apply only to stationary series.
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.
Formulas for its mean and variance are in the section #Logarithmic expectation and variance. If X ~ Gamma(α, θ), then follows a generalized gamma distribution with parameters p = 2, d = 2α, and = [citation needed].