Search results
Results from the WOW.Com Content Network
In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband.
These two lines meet at the corner frequency. From the plot, it can be seen that for frequencies well below the corner frequency, the circuit has an attenuation of 0 dB, corresponding to a unity pass-band gain, i.e. the amplitude of the filter output equals the amplitude of the input.
In filters, optical filters, and electronic amplifiers, [2] the half-power point is also known as half-power bandwidth and is a commonly used definition for the cutoff frequency. In the characterization of antennas the half-power point is also known as half-power beamwidth and relates to measurement position as an angle and describes ...
In electronics, a filter is a two-port electronic circuit which removes frequency components from a signal (time-varying voltage or current) applied to its input port. A high-pass filter attenuates frequency components below a certain frequency, called its cutoff frequency, allowing higher frequency components to pass through.
A plot of the frequency response of a Butterworth Lowpass filter, with a cutoff frequency of 2kHz. The transition band, also called the skirt, is a range of frequencies that allows a transition between a passband and a stopband of a signal processing filter. The transition band is defined by a passband and a stopband cutoff frequency or corner ...
The cutoff attenuation for Butterworth filters is usually defined to be −3.01 dB. If it is desired to use a different attenuation at the cutoff frequency, then the following factor may be applied to each pole, whereupon the poles will continue to lie on a circle, but the radius will no longer be unity. [8]
The stopband of a low-pass filter is the frequencies from the stopband corner frequency (which is slightly higher than the passband 3 dB cut-off frequency) up to the infinite frequency. The stopband of a high-pass filter consists of the frequencies from 0 hertz to a stopband corner frequency (slightly lower than the passband cut-off frequency).
For some filter classes, such as the Butterworth filter, the insertion loss is still monotonically increasing with frequency and quickly asymptotically converges to a roll-off of 20n dB/decade, but in others, such as the Chebyshev or elliptic filter the roll-off near the cut-off frequency is much faster and elsewhere the response is anything ...