Search results
Results from the WOW.Com Content Network
force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing with such a derivative, both magnitude and orientation may depend upon time.
The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...
velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by
The College Board intentionally schedules the AP Calculus AB exam at the same time as the AP Calculus BC exam to make it impossible for a student to take both tests in the same academic year, though the College Board does not make Calculus AB a prerequisite class for Calculus BC.
Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."
Thus, the derivative of a function called f is denoted by f′, pronounced "f prime" or "f dash". For instance, if f(x) = x 2 is the squaring function, then f′(x) = 2x is its derivative (the doubling function g from above). If the input of the function represents time, then the derivative represents change concerning time.
Derivative; Notation. Newton's notation for differentiation; Leibniz's notation for differentiation; Simplest rules Derivative of a constant; Sum rule in differentiation
derivative test A derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function. differentiable function