Search results
Results from the WOW.Com Content Network
The concept of pyrexia as a protective physiological response to aid in host defence has been challenged with the awareness of the severe metabolic stress induced by pyrexia. The host response to pyrexia varies, however, according to the disease profile and severity and, as such, the management of pyrexia should differ; for example, temperature control is safe and effective in septic shock but ...
Most episodes of pyrexia are due to infections, but incidence estimates of infectious and noninfectious aetiologies are limited by studies with small sample size and inconsistent reporting of noninfectious aetiologies. Pyrexia commonly triggers a full septic work-up, but on its own is a poor predictor of culture-positivity.
The normal human temperature is considered to be 37 °C, but may vary by up to 1 °C in healthy individuals [1]. Elevated core temperature is a common finding in intensive care, affecting up to 70 % of patients [2]. Despite the general usage of the terms ‘pyrexia’, ‘fever’, and ‘hyperthermia’, they are not yet universally defined.
noninfectious pyrexia, is more commonly observed in patients with hyperthermia. Most episodes of pyrexia are due to infections, but incidence estimates of infectious and noninfectious aetiologies are limited by studies with small sample size and inconsistent reporting of noninfectious aetiologies. Pyrexia commonly triggers a full septic work-up,
Background Fever and hypothermia have been observed in septic patients. Their influence on prognosis is subject to ongoing debates. Methods We did a secondary analysis of a large clinical dataset from a quality improvement trial. A binary logistic regression model was calculated to assess the association of the thermal response with outcome and a multinomial regression model to assess factors ...
The cost of pyrexia should be considered in several ways. Pyrexia has a metabolic cost such that cooling fe-brile ICU patients will reduce oxygen consumption by 10 % per °C [6]. Small studies in sedated patients dem-onstrated a significant reduction in VO 2 (the rate of oxy-gen consumption) and VCO 2 (the rate of carbon dioxide
Aims and scope The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. Methods A group of 18 international neuro-intensive care experts in the acute ...
An elevated temperature has many aetiologies, both infective and non-infective, and while the fever of sepsis probably confers benefit, there is increasing evidence that the central nervous system is particularly vulnerable to damage from hyperthermia. A single episode of hyperthermia may cause short-term neurological and cognitive dysfunction, which may be prolonged or become permanent. The ...
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ...
Mechanisms of damage from fever. There are a number of pathophysiological mechanisms for the deleterious effects of a fever, classified as follows (Fig. 2): Direct cellular damage Local effects, e.g. stimulation of cytokines and inflammatory response Systemic effects, e.g. gut bacterial translocation.