enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's mantle - Wikipedia

    en.wikipedia.org/wiki/Earth's_mantle

    In the mantle, temperatures range from approximately 500 K (230 °C; 440 °F) at the upper boundary with the crust to approximately 4,200 K (3,900 °C; 7,100 °F) at the core-mantle boundary. [20] The temperature of the mantle increases rapidly in the thermal boundary layers at the top and bottom of the mantle, and increases gradually through ...

  3. Mantle (geology) - Wikipedia

    en.wikipedia.org/wiki/Mantle_(geology)

    The Earth's mantle is a layer of silicate rock between the crust and the outer core. Its mass of 4.01 × 10 24 kg is 67% the mass of the Earth. [1] It has a thickness of 2,900 kilometres (1,800 mi) [1] making up about 84% of Earth's volume. It is predominantly solid, but in geological time it behaves as a viscous fluid.

  4. Lower mantle - Wikipedia

    en.wikipedia.org/wiki/Lower_mantle

    The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. [1] The preliminary reference Earth model (PREM) separates the lower mantle into three sections, the uppermost (660–770 ...

  5. Earth's internal heat budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_internal_heat_budget

    The Earth core's heat flow—heat leaving the core and flowing into the overlying mantle—is thought to be due to primordial heat, and is estimated at 5–15 TW. [23] Estimates of mantle primordial heat loss range between 7 and 15 TW, which is calculated as the remainder of heat after removal of core heat flow and bulk-Earth radiogenic heat ...

  6. Geothermal gradient - Wikipedia

    en.wikipedia.org/wiki/Geothermal_gradient

    Geothermal gradient is the rate of change in temperature with respect to increasing depth in Earth 's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plate boundaries, temperature rises in about 25–30 °C/km (72–87 °F/mi) of depth near the surface in ...

  7. Internal structure of Earth - Wikipedia

    en.wikipedia.org/wiki/Internal_structure_of_Earth

    This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust]. The mantle is divided into upper and lower mantle [21] separated by a transition zone. [22] The lowest part of the mantle next to the core-mantle boundary is known as the D″ (D-double-prime) layer. [23]

  8. Core–mantle boundary - Wikipedia

    en.wikipedia.org/wiki/Coremantle_boundary

    coremantle boundary. outer core–inner core boundary. The coremantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the ...

  9. Thermal history of Earth - Wikipedia

    en.wikipedia.org/wiki/Thermal_history_of_Earth

    The potential temperature of the mantle is estimated to be about 1350 C today. There is an analogous potential temperature of the core but since there are no samples from the core its present-day temperature relies on extrapolating the temperature along an adiabat from the inner core boundary, where the iron solidus is somewhat constrained.