Search results
Results from the WOW.Com Content Network
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [1] [2] It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels (from Greek kardia meaning heart, and Latin vascula meaning vessels).
Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues.
Blood accounts for 7% of the human body weight, [9] [10] with an average density around 1060 kg/m 3, very close to pure water's density of 1000 kg/m 3. [11] The average adult has a blood volume of roughly 5 litres (11 US pt) or 1.3 gallons, [10] which is composed of plasma and formed elements.
The heart is the driver of the circulatory system, pumping blood through rhythmic contraction and relaxation. The rate of blood flow out of the heart (often expressed in L/min) is known as the cardiac output (CO). Blood being pumped out of the heart first enters the aorta, the largest artery of the body.
Blood is 92% water by weight and the rest of blood is composed of protein, nutrients, electrolytes, wastes, and dissolved gases. Depending on the health of an individual, the blood viscosity can vary (i.e., anemia causing relatively lower concentrations of protein, high blood pressure an increase in dissolved salts or lipids, etc.). [30]
Circulation is split into pulmonary circulation—during which the right ventricle pumps oxygen-depleted blood to the lungs through the pulmonary trunk and arteries; or the systemic circulation—in which the left ventricle pumps/ejects newly oxygenated blood throughout the body via the aorta and all other arteries. [1] [2]
In the systemic circulation, veins serve to return oxygen-depleted blood from organs, and tissues to the right heart. From here it passes to the pulmonary arteries for the pulmonary circulation to return oxygen-rich blood to the left heart in the pulmonary veins, to be pumped back into the systemic circulation to complete the cycle. Veins have ...
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.