Search results
Results from the WOW.Com Content Network
The familiar decimal notation for real numbers can also be viewed as an example of a power series, with integer coefficients, but with the argument x fixed at 1 ⁄ 10. In number theory, the concept of p-adic numbers is also closely related to that of a power series.
The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The argument, first given by Cauchy, hinges on Cauchy's integral formula and the power series expansion of the expression 1 w − z . {\displaystyle {\frac {1}{w-z}}.} Let D {\displaystyle D} be an open disk centered at a {\displaystyle a} and suppose f {\displaystyle f} is differentiable everywhere within an open neighborhood containing the ...
The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.