Ads
related to: equivalent expressions examples worksheets 2nd quarter moduleteacherspayteachers.com has been visited by 100K+ users in the past month
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Projects
Search results
Results from the WOW.Com Content Network
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Two rings R and S (associative, with 1) are said to be (Morita) equivalent if there is an equivalence of the category of (left) modules over R, R-Mod, and the category of (left) modules over S, S-Mod. It can be shown that the left module categories R-Mod and S-Mod are equivalent if and only if the right module categories Mod-R and Mod-S are
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
For example, in modular arithmetic, for every integer m greater than 1, the congruence modulo m is an equivalence relation on the integers, for which two integers a and b are equivalent—in this case, one says congruent—if m divides ; this is denoted ().
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction. The category of sets and partial functions is equivalent to but not isomorphic with the category of pointed sets and point-preserving maps. [2]
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
For example, is an expression, while the inequality is a formula. To evaluate an expression means to find a numerical value equivalent to the expression. [3] [4] Expressions can be evaluated or simplified by replacing operations that appear in them with their result.
Ads
related to: equivalent expressions examples worksheets 2nd quarter moduleteacherspayteachers.com has been visited by 100K+ users in the past month