Search results
Results from the WOW.Com Content Network
For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m).
If m is a power of 2, then a − 1 should be divisible by 4 but not divisible by 8, i.e. a ≡ 5 (mod 8). [1]: §3.2.1.3 Indeed, most multipliers produce a sequence which fails one test for non-randomness or another, and finding a multiplier which is satisfactory to all applicable criteria [1]: §3.3.3 is quite challenging. [8]
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ ( φ ( m )) such primitive roots, where φ is the Euler's totient function.
In particular, x 2 ≡ a (mod p) has at most 2 solutions for each a. This immediately implies that besides 0 there are at least p − 1 / 2 distinct quadratic residues modulo p : each of the p − 1 possible values of x can only be accompanied by one other to give the same residue.
Modulo 2, every integer is a quadratic residue. Modulo an odd prime number p there are (p + 1)/2 residues (including 0) and (p − 1)/2 nonresidues, by Euler's criterion.In this case, it is customary to consider 0 as a special case and work within the multiplicative group of nonzero elements of the field (/).