Search results
Results from the WOW.Com Content Network
Basic definitions. The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise. The statement being tested in a test of statistical significance is called the null ...
Biostatistics. Biostatistics (also known as biometry) is a branch of statistics that applies statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments, the collection and analysis of data from those experiments and the interpretation of the results.
The test of significance is designed to assess the strength of the evidence against the null hypothesis. Usually, the null hypothesis is a statement of 'no effect' or 'no difference'." [2] Null hypothesis is often denoted as H 0. The statement that is being tested against the null hypothesis is the alternative hypothesis. [2]
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. For example, an innocent person may be convicted. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. For example: a guilty person may be not convicted.
The alternative hypothesis, as the name suggests, is the alternative to the null hypothesis: it states that there is some kind of relation. The alternative hypothesis may take several forms, depending on the nature of the hypothesized relation; in particular, it can be two-sided (for example: there is some effect, in a yet unknown direction) or ...
Decide to either reject the null hypothesis in favor of the alternative or not reject it. The Neyman-Pearson decision rule is to reject the null hypothesis H 0 if the observed value t obs is in the critical region, and not to reject the null hypothesis otherwise. Practical example
The Design of Experiments is a 1935 book by the English statistician Ronald Fisher about the design of experiments and is considered a foundational work in experimental design. [2][3][4] Among other contributions, the book introduced the concept of the null hypothesis in the context of the lady tasting tea experiment. [5]
p. -value. In null-hypothesis significance testing, the p-value[note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2][3] A very small p -value means that such an extreme observed outcome would be very unlikely under the null hypothesis.