enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities ...

  3. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    v. t. e. The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter. The law also defines the internal energy ...

  4. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    Other. Category. v. t. e. An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings ...

  5. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    e. In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a ...

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way. Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental ...

  7. Isobaric process - Wikipedia

    en.wikipedia.org/wiki/Isobaric_process

    e. In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: Δ P = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system.

  8. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    e. The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships ...

  9. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Internal energy is a principal property of the thermodynamic state, while heat and work are modes of energy transfer by which a process may change this state. A change of internal energy of a system may be achieved by any combination of heat added or removed and work performed on or by the system. As a function of state, the internal energy ...