Search results
Results from the WOW.Com Content Network
The denatured molten-salt reactor (DMSR) was an Oak Ridge theoretical design that was never built. Engel et al. 1980 said the project "examined the conceptual feasibility of a molten-salt power reactor fueled with denatured uranium-235 (i.e. with low-enriched uranium) and operated with a minimum of chemical processing."
The IMSR design is used for a variety of heat demand applications, ranging from power generation to cogeneration, or process-heat only. The integral molten salt reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market.
Molten salts (fluoride, chloride, and nitrate) can be used as heat transfer fluids as well as for thermal storage. This thermal storage is used in concentrated solar power plants. [8] [9] Molten-salt reactors are a type of nuclear reactor that uses molten salt(s) as a coolant or as a solvent in which the fissile material is dissolved ...
Passive decay heat cooling. Many reactor designs (such as that of the Molten-Salt Reactor Experiment) allow the fuel/coolant mixture to escape to a drain tank, when the reactor is not running (see "Fail safe core" below). This tank is planned to have some kind (details are still open) of passive decay heat removal, thus relying on physical ...
The U.S. Nuclear Regulatory Commission is issuing a construction permit for a new type of nuclear reactor that uses molten salt to cool the reactor core. The NRC is issuing the permit to Kairos ...
The Molten-Salt Reactor Experiment (MSRE) was an experimental molten-salt reactor research reactor at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969. [ 1 ]
The PHXs in the primary fuel loop reject heat to the primary coolant loop and are shell-and-tube heat exchangers. The PHXs are constructed of a nickel based alloy, Hastelloy N, and each has a rate of heat transfer equal to 125 MW. The primary fuel salt for the MSDR is LiF-BeF 2-ThF 4-UF 4 (71.5-16.0-12.0-0.5 mole %).
In the event of a reactor shutdown and failure of all active heat-removal systems in the SSR, decay heat from the core would dissipate into air-cooling ducts around the perimeter of the tank that operate continually. This is known as the Emergency Heat Removal System. The main heat-transfer mechanism is radiative.