Search results
Results from the WOW.Com Content Network
This article about materials science is a stub. You can help Wikipedia by expanding it.
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%.
Measurements are made of the phase changes or of the quantity of the liquid that is crystalline / liquid (depending on the measurement technique used). The techniques make use of the Gibbs–Thomson effect: small crystals of a liquid in the pores melt at a lower temperature than the bulk liquid : The melting point depression is inversely ...
For premium support please call: 800-290-4726 more ways to reach us
This porosity is related to a number of important properties of the material, including the strength and permeability, which in turn affect the properties of the resulting concrete. Measurement of the specific surface area using the BET method is useful for comparing different cements.
For premium support please call: 800-290-4726 more ways to reach us
Measurement consists of packing the powder into a cylindrical "bed" having a known porosity (i.e. volume of air-space between particles divided by total bed volume). A pressure drop is set up along the length of the bed cylinder. The resulting flow-rate of air through the bed yields the specific surface by the Kozeny–Carman equation: [1]
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.