Search results
Results from the WOW.Com Content Network
Computer-aided ergonomics is an engineering discipline using computers to solve complex ergonomic problems involving interaction between the human body and its environment. The human body holds a great complexity thus it can be beneficial to use computers to solve problems involving the human body and the environment that surrounds it.
The term ergonomics (from the Greek ἔργον, meaning "work", and νόμος, meaning "natural law") first entered the modern lexicon when Polish scientist Wojciech Jastrzębowski used the word in his 1857 article Rys ergonomji czyli nauki o pracy, opartej na prawdach poczerpniętych z Nauki Przyrody (The Outline of Ergonomics; i.e. Science of Work, Based on the Truths Taken from the ...
In human-computer interaction and computer science, usability studies the elegance and clarity with which the interaction with a computer program or a web site (web usability) is designed. Usability considers user satisfaction and utility as quality components, and aims to improve user experience through iterative design .
Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. [1] [2] It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages.
Meaning, as new technology arises, humans will now have to adapt to the change leaving a deficiency somewhere else. Human Computer Interaction has a huge part in cognitive ergonomics because we are in a time period where most of life is digitalized. This created new problems and solutions.
Computer accessibility refers to the accessibility of a computer system to all people, regardless of disability type or severity of impairment. The term accessibility is most often used in reference to specialized hardware or software, or a combination of both, designed to enable the use of a computer by a person with a disability or impairment.
Fitts's law (often cited as Fitts' law) is a predictive model of human movement primarily used in human–computer interaction and ergonomics. The law predicts that the time required to rapidly move to a target area is a function of the ratio between the distance to the target and the width of the target. [1]
Neuroergonomics is the application of neuroscience to ergonomics. Traditional ergonomic studies rely predominantly on psychological explanations to address human factors issues such as: work performance, operational safety, and workplace-related risks (e.g., repetitive stress injuries). Neuroergonomics, in contrast, addresses the biological ...