Search results
Results from the WOW.Com Content Network
In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. [1] [2] In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. [3] [4]
In photometric quantities every wavelength is weighted according to how sensitive the human eye is to it, while radiometric quantities use unweighted absolute power. For example, the eye responds much more strongly to green light than to red, so a green source will have greater luminous flux than a red source with the same radiant flux would.
A luminous efficiency function or luminosity function represents the average spectral sensitivity of human visual perception of light. It is based on subjective judgements of which of a pair of different-colored lights is brighter, to describe relative sensitivity to light of different wavelengths .
The 26th General Conference on Weights and Measures (CGPM) redefined the candela in 2018. [10] [11] The new definition, which took effect on 20 May 2019, is: The candela [...] is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, [a] K cd, to be 683 when expressed in the unit lm W −1, which is equal to cd sr W −1 ...
The luminous flux accounts for the sensitivity of the eye by weighting the power at each wavelength with the luminosity function, which represents the eye's response to different wavelengths. The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute.
This section lists examples of luminances, measured in candelas per square metre and grouped by order of magnitude. Factor (cd/m 2) Multiple Value Item 10 −6: