enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lanthanum - Wikipedia

    en.wikipedia.org/wiki/Lanthanum

    Lanthanum makes up 39 mg/kg of the Earth's crust, [48] [49] behind neodymium at 41.5 mg/kg and cerium at 66.5 mg/kg. Despite being among the so-called "rare earth metals", lanthanum is thus not rare at all, but it is historically so-named because it is rarer than "common earths" such as lime and magnesia, and at the time it was recognized only ...

  3. Lanthanide - Wikipedia

    en.wikipedia.org/wiki/Lanthanide

    The lanthanide contraction, i.e. the reduction in size of the Ln 3+ ion from La 3+ (103 pm) to Lu 3+ (86.1 pm), is often explained by the poor shielding of the 5s and 5p electrons by the 4f electrons.

  4. Valence (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Valence_(chemistry)

    The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1.

  5. Lanthanide contraction - Wikipedia

    en.wikipedia.org/wiki/Lanthanide_contraction

    The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.

  6. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    All protons in the same level (n) have the same parity (either +1 or −1), and since the parity of a pair of particles is the product of their parities, an even number of protons from the same level (n) will have +1 parity. Thus, the total angular momentum of the eight protons and the first eight neutrons is zero, and their total parity is +1.

  7. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs.

  8. Valence electron - Wikipedia

    en.wikipedia.org/wiki/Valence_electron

    For transition metals the orbitals of the incomplete (n−1)d subshell are included, and for lanthanides and actinides incomplete (n−2)f and (n−1)d subshells. The orbitals involved can be in an inner electron shell and do not all correspond to the same electron shell or principal quantum number n in a given element, but they are all at ...

  9. Core electron - Wikipedia

    en.wikipedia.org/wiki/Core_electron

    For transition metals, the number of valence electrons ranges from 3 to 12 (ns and (n−1)d orbitals). For lanthanides and actinides, the number of valence electrons ranges from 3 to 16 (ns, (n−2)f and (n−1)d orbitals). All other non-valence electrons for an atom of that element are considered core electrons.