enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus .

  3. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  4. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: ⁡ = = + +, where c k is defined as above. Asymptotic expansion

  5. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor, [8] after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, who published a special case of the Taylor result in the mid-18th century.

  6. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...

  7. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    This expansion is a Maclaurin series, so the n th cumulant can be obtained by differentiating the above expansion n times and evaluating the result at zero: [1] = (). If the moment-generating function does not exist, the cumulants can be defined in terms of the relationship between cumulants and moments discussed later.

  8. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion ⁡ = + + +.

  9. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    The Maclaurin series of an even function includes only even powers. The Maclaurin series of an odd function includes only odd powers. The Fourier series of a periodic even function includes only cosine terms. The Fourier series of a periodic odd function includes only sine terms. The Fourier transform of a purely real-valued even function is ...