Search results
Results from the WOW.Com Content Network
Giant clouds of hydrogen and helium were gradually drawn to the places where matter was most dense, forming the first galaxies, stars, and everything else seen today. From studying the effects of gravity on both matter and light, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars ...
Dark matter can refer to any substance which interacts predominantly via gravity with visible matter (e.g., stars and planets). Hence in principle it need not be composed of a new type of fundamental particle but could, at least in part, be made up of standard baryonic matter, such as protons or neutrons. Most of the ordinary matter familiar to ...
Nothing "cancels" gravity, since it is only attractive, unlike electric forces which can be attractive or repulsive. On the other hand, all objects having mass are subject to the gravitational force, which only attracts. Therefore, only gravitation matters on the large-scale structure of the universe.
Supermassive black holes, regions of space where the pull of gravity is so intense that even light doesn't have enough energy to escape, are often considered terrors of the known universe.
The four-dimension universe lies on one of the branes. The collision corresponds to the Big Crunch, then a Big Bang. The matter and radiation around us today are quantum fluctuations from before the branes. After several billion years, the universe has reached its modern state, and it will start contracting in another several billion years.
“This ‘dialogue’ with the universe is what makes our field of time-domain astronomy so incredibly thrilling.” The CHIME telescopes in British Columbia detected the unusual fast radio burst ...
The model makes it clear to see how the matter-dense regions contract under the collective gravitational force while simultaneously aiding in the expansion of cosmic voids as the matter flees to the walls and filaments. Cosmic voids contain a mix of galaxies and matter that is slightly different than other regions in the universe.
The matter in the universe is around 84.5% cold dark matter and 15.5% "ordinary" matter. Since the start of the matter-dominated era, dark matter has gradually been gathering in huge spread-out (diffuse) filaments under the effects of gravity.