Search results
Results from the WOW.Com Content Network
Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone, and beta-hydroxy-butyrate) are marked within orange boxes. Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids.
n/a n/a Ensembl n/a n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) n/a n/a PubMed search n/a n/a Wikidata View/Edit Human Hydroxymethylglutaryl-CoA lyase HMG-CoA lyase dimer, Human Identifiers EC no. 4.1.3.4 CAS no. 9030-83-5 Databases IntEnz IntEnz view BRENDA BRENDA entry ExPASy NiceZyme view KEGG KEGG entry MetaCyc metabolic pathway PRIAM profile PDB ...
The concentration of ketone bodies in blood is maintained around 1 mg/dL. Their excretion in urine is very low and undetectable by routine urine tests (Rothera's test). [18] When the rate of synthesis of ketone bodies exceeds the rate of utilization, their concentration in blood increases; this is known as ketonemia.
Mutations in this gene are associated with mitochondrial HMG-CoA synthase deficiency (also known as HMGCS2D), affecting ketone body synthesis. [7] Affected patients are unable to perform ketogenesis during starvation and times of higher energy need such as fever and vigorous exercise.
This deficiency is classified as a disorder ketone body and isoleucine metabolism that can be inherited. [citation needed] Additional mutations include those with the enzymes within pathways related to Acetoacetyl CoA, including Beta-Ketothiolase deficiency and Mitochondrial 3-hydroxy-3-methylglutaryl-CoA Synthase mutation. Mevalonate pathway
A ketogenic amino acid is an amino acid that can be degraded directly into acetyl-CoA, which is the precursor of ketone bodies and myelin, particularly during early childhood, when the developing brain requires high rates of myelin synthesis. [1] This is in contrast to the glucogenic amino acids, which are converted into glucose.
The encoded protein forms a homotetrameric lipid-requiring enzyme of the mitochondrial membrane and has a specific requirement for phosphatidylcholine for optimal enzymatic activity. The encoded protein catalyzes the interconversion of acetoacetate and (R)-3-hydroxybutyrate, the two major ketone bodies produced during fatty acid catabolism.
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]