Search results
Results from the WOW.Com Content Network
The lack of orbital interactions combined with the lanthanide contraction means that the lanthanides change in size across the series but that their chemistry remains much the same. This allows for easy tuning of the steric environments and examples exist where this has been used to improve the catalytic activity of the complex [ 31 ] [ 32 ...
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
The lanthanide ions in these complexes can readily react with oxygen and water, leading to oxidation or hydrolysis, which damages the material’s structure and reduces its efficiency. This makes handling and storage difficult, requiring protective environments like sealed containers or inert gas atmospheres.
The lanthanides become harder as the series is traversed: as expected, lanthanum is a soft metal. Lanthanum has a relatively high resistivity of 615 nΩm at room temperature; in comparison, the value for the good conductor aluminium is only 26.50 nΩm. [28] [29] Lanthanum is the least volatile of the lanthanides. [30]
The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their difference; as per Valence bond theory. For multiple bonds and lone pairs, different localization procedures give different orbitals .
The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), [1] are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals. Compounds containing rare ...
The outer valence electrons are more strongly attracted by the nucleus causing the observed increase in ionization potentials. The d-block contraction can be compared to the lanthanide contraction , which is caused by inadequate shielding of the nuclear charge by electrons occupying f orbitals.
The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs.