Search results
Results from the WOW.Com Content Network
Phagocytosis (from Ancient Greek φαγεῖν (phagein) 'to eat' and κύτος (kytos) 'cell') is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is called a phagocyte.
Every organism requires energy to be active. [1] However, to obtain energy from its outside environment, cells must not only retrieve molecules from their surroundings but also break them down. [ 1 ] This process is known as intracellular digestion. [ 1 ]
The phagocyte then stretches itself around the bacterium and engulfs it. Phagocytosis of bacteria by human neutrophils takes on average nine minutes. [25] Once inside this phagocyte, the bacterium is trapped in a compartment called a phagosome. Within one minute the phagosome merges with either a lysosome or a granule to form a phagolysosome.
Two low-energy waste products, H 2 O and CO 2, are created during this cycle. [9] [10] The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes. During the cycle, acetyl-CoA (2 carbons) + oxaloacetate (4 carbons) yields citrate (6 carbons), which is rearranged to a more reactive form called isocitrate (6 carbons).
The process of phagocytosis showing phagolysosome formation. Lysosome(shown in green) fuses with phagosome to form a phagolysosome. Membrane fusion of the phagosome and lysosome is regulated by the Rab5 protein, [1] a G protein that allows the exchange of material between these two organelles but prevents complete fusion of their membranes. [1]
The first step in energetics is photosynthesis, where in water and carbon dioxide from the air are taken in with energy from the sun, and are converted into oxygen and glucose. [7] Cellular respiration is the reverse reaction, wherein oxygen and sugar are taken in and release energy as they are converted back into carbon dioxide and water.
NOAA and Nasa revealed the Sun reached solar maximum, a period of peak sunspot activity in its 11-year cycle. However, space weather experts said peak activity is expected to continue into 2025.
The electron in the higher energy level is unstable and will quickly return to its normal lower energy level. To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence).