Search results
Results from the WOW.Com Content Network
A Bayesian Gaussian mixture model is commonly extended to fit a vector of unknown parameters (denoted in bold), or multivariate normal distributions.
Bayesian Gaussian mixture model using plate notation. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size K; [D,D] means a matrix of size D×D; K alone means a categorical variable with K outcomes.
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.
Bayesian multivariate Gaussian mixture model using plate notation. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size K; [D,D] means a matrix of size D×D; K alone means a categorical variable with K outcomes.
In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred.
English: Plate diagram of graphical Bayesian Gaussian mixture model used in English Variational Bayes article. Created using the following LaTeX, TikZ: Source Code
A more general class of regression-based multi-fidelity methods are Bayesian approaches, e.g. Bayesian linear regression, [3] Gaussian mixture models, [10] [11] Gaussian processes, [12] auto-regressive Gaussian processes, [2] or Bayesian polynomial chaos expansions. [4]